Get count heat map
get_gap_heat_map#
def get_gap_heat_map(cube: xr.DataArray, count_dim: str) -> xr.DataArray
Description#
A heat map of value counts (non-NaN
values) for each pixel of dimensions in an xarray.DataArray
is genrated.
This heat map helps in visualizing the distribution and density of gaps across the spatial dimensions.
Parameters#
- cube (
xarray.DataArray
): The input data cube. - count_dim (
str
): The dimension along which to count non-NaN
values, typically spatial dimensions such as 'latitude' or 'longitude'.
Returns#
xarray.DataArray
: Heat map of non-NaN
value counts for each pixel across one dimension.
Example#
import xarray as xr
from ml4xcube.xr_plots import plot_slice
from ml4xcube.cube_insights import get_gap_heat_map
# Load sample data
ds = xr.open_zarr('sample_data.zarr')
ds = ds['temperature']
# Generate and visualize the gap heat map
gap_heat_map = get_gap_heat_map(ds)
dataset = gap_heat_map.to_dataset(name='temperature')
plot_slice(
ds = dataset,
var_to_plot = 'temperature',
color_map = "plasma",
title = "Filled artificial gaps matrix",
label = "Number of gaps",
xdim = "lon",
ydim = "lat"
)